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I. INTRODUCTICK

The Inflaticnarv Universe models predict the [ = 1 universe.
Unfortunately this useful and esthetic feature seems to be in
contradiction with cbservations of the larce~scale structure of
the Universe suggesting that 8 = 0.1-0.3 . One ¢f the ways to
resolve this problem is to assume that the universe is dominated
today by the relativistic matter and the measured value of 0 is
relevant only to nonrelativistic components. However, to ensure
sufficient growth of density perturbations the universe had to be
matter-dominated for some time. This leads to suggestion that the

universe became radiation-dominated only recently.

The Decaying Particle Cosmology (DPC) (Turner, Steigman and
Krauss 1984, Turner 1985a) assumes that in the past the universe
was dominated by the nonrelativistic particles ¥ that at the
redshift 24

tocday smoothly distributed on scales corresponcing to the

decayed inte light, relativistic particlesz R that are

observations determining the value of .

An important constraint on this model comes from the observed
age of globular clusters - the value of the Hubble constant today
Hy = h-100 km/s'Mpc has to be h £ 0.5. This is a severe .
constraint, however even lower values of h are still suggested by

some observaticns.

Vittorio and Silk (1985) investigated the fine-scale
microwave Dbackground radiation (MBR} anisotrcries in DPC models

with decaying neutrines and found that they may be consistent

with observaticns if 2 £ z4 <4, 0.4 ¢ h 0.5,
10-109yr & to £ 12-109yr where to is the age of the Universe,

Analogously, Turner (1985b) found that if decaying particles were
celd relics the value of the redshift of decay might be zd§10.
Adopting the other normalization of the spectrum of perturbations
Kolb, Olive and Vittorioc {1986) obtained the 1limit 2 ¢ Zs <4

being valid also feor cold relics.



In this paper we investigate the large-scale MBR anisotropy
in DPC models of decaying neutrinos and decaying cold matter. We
find the values of gquadrupole moment using the gauge-invariant
formalism (Panek 1986). Comparing these values with the cbserved
< 1074

a we conlude that the redshift of decay must be zd$3—5

-

“

wnere the uncertainity comes from the method of normalization of
the perturbation spectrum. One of these methods leads even to the
conclusion that the neutrinos should be excluded as decaying

particle candidates.

In Sec.II we descibe the equations of +he evolution ol
per-urbations and the formalism to obtain the MBER anisotropy.
Sec.I1T describes the methods of normalization of <he
perturbation spectrum. Sec.IV contains the results and, finally,

Sec.V. - conclusicns.

I1. THE EVOLUTICN OF MCDEL AND THE MBR ANISCTROPY
A. The evolution of the background.

We assume that after early, radiation-dominated stage the

universe is filled with three forms of matter: stable,
nonrelativistic particies NR (baryons + others); aqominating for
most of the matter—-dominated ers nconrelativistic, wunstable

particles X that decay into light, relativistic particles R that

make the universe radiation-dominated again. Parameters that
ri e 1l are 1t z
describe the model a h, NR and a

According to previcusly obtained constraints and observations
the allowed range of h in the model is 0.3-0.5 .

Qj = BﬂGpj/3HS is the ratic of density in form of the
particles and the closure density taken tcday and :NR = 0.7=-0.3
for the purpcse of caiculations we take the wvalue 0.1). We
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The considered range of values of Z4 is 2-10. The X particles

decay according to the exponential law and Z4 is cefined as:

- /lNK 5 =1 P ?N,@\! ;
s e P ' F:(Qx J: )

where the subscript i means that the ratio of densities is taken

at some time ti at the beginning of the matter-dominated era.

The Einstein eguations give us the evoluticr cf the mefel. We
define (Turner 1985a):
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where [ = xHHO{LNRSRB (1+3ﬂ is the ¥X's decay width and
SR is the expansion parameter today (Si=1). iz the density of

YXi

X particles at the initial moment and is expressed in the choosen
~ - 2!‘\ 35—1 g - vl g +
model parameters as Fxs BHOMNRSR_ . The evolution of the

background is given by:



where prime denctes the derivative with respect to the new time

variabhle x.

We have integrated these equations from some sufficiently

. ] el=] ! = - kv 3 :
small value of > until when fR’fNR {1 “NR},LNR which 1is

identified with the present moment.

B. The evolution of perturbations.

To obtain the eguations for the perturbaticns of matter we
assumed that the NR particles follow the perturbations of X

particles during the matter-dominated era: gy = gy = €, (from

%
now on we will use £, because the MBE fluctuations are expressed
in barvonic gquantities). The perturbations of the R particles on

scales smaller than the horizon will be damped because of the

free-streaming (these particles are most likely to be
collisionless). However, the PR perturbations on scales larger
than horizon are nonzero and we cannot neglect them, especially

because we know that the most power to guadrupole moment comes

from the scales comparable to the size of the horizon today.

The equations of evolution for perturbations of NR matter

are:
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where k is the wave number and u = kST 'v where v

Sk gp 18 the
gauge-invariant guantity for the barvonic velocity perturbations.

The analogous equations feor perturbations of R matter are
much more complicated, however, as we can see these

perturbations, ¢ come to the equations (4) cnly as a simple

R I
source term. This suggests a simple approximation. Let s assume

{with the same

that R perturbations switch on in the moment t = r
amplitude as X perturbations that give them the birth. Then they
evolve as the growing mode of perturbations of radiation in
radiation-dominated universe and decay instantanuously when they
enter the horizon. These means that for x < 1 ¢, = 0 , for x > 1

R ”
{(Bardeen 1980):

ge = ¢, (k=1 . M (5)
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where j1(y) is the spherical Bessel function of order 1,
X -

y = chs , T = j; T's) 1dx, Y. = y(x=1) and c. is the speed of

sound, c; = 1/3. For a given X again 1is €p = 0 for 7 2 37n/2k

(this wvalue was chocosen because then the radiation perturbations
stcp to grow and start to decay).



C. The MBR anisctropy.

The anisotropy of MBR orn large scales comes from the
perturbations of geometry that can be convenientlylexpressed as
functicns of baryonic perturbaticns and hLave to Dbe integrated
along null geodesics. We are interested in the value of the

gquadrupole moment that is given by:

where:
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The subscripts E and R denote emission and reception (we

assumed that emmision occures at the redshift Zp T 1300}, kmax is
the scale corresponding to the size of the horizon at emmision
(in fact all the power comes to a, from scales k < 0.2 kmax) and
the function 12 ig equal to:
!
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The procedure was then as follows: first, to solve the
equations for the background (3), second, use the solutions to
integrate the eguations of perturbations (4) and third, use the
perturbations to obtain the value o¢f quadrupole mecment
(6),(7),(8).



I1I. THE NORMALIZATION OF SPECTRUM O PERTURBATIONS.

The inflaticon gives us not only the flat universe, but also a

detailed form of the spectrum of initial, adiabatic
perturbations. This is the Harrison-Zeldovich
spectrum: 1gj{k)‘2hrk. Assuming this initial spectrum and

following the procedures described at the end of the previous
section we obtain the wvalue of quadrupole moment that is scaled
by one, so far unknown parameter - the amplitude of
perturbations.

To find this amplitude we have to follow the evolution of
perturbations until today and compare resulting distribution of
matter with the observed distribution of luminuous matter in the

Universe.

For different contens of the universe the initial
Harrison-Zeldovich spectrum evolves into different forms today.
For the X particles being massive neutrinos the spectrum is
{White, Frenk and Davis 1983}:

s Ao k exp [-v. 64 /k/ky\/m) (3)
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where kv = 0.499R(1+zd)h2 is the characteristic damping scale.

If the X particles were cold relics we have (Davis et al.
1985) :

-1
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where a = 1.7(QR(1+2 )h2}—1, b = 9(QR(1+Zd)h2f4'5,

d
c = (QR(1+zd)h2)_2.

The characteristic scales in (9) and (10) come from the size
of the herizon 2t the moment when the universe became

matter-dominated.



Because the details of the galaxy formation and the
reliability of the normalization procedures are not well known,
usually the normalization is the weakest point of MBR fluctuation
calculaticons. Depending whether the dark matter was hot or cold
the galaxy formation proceeds in the different manner. Therefore
the appriopriate normalization procedures for both scenarios can
be different.

The standard normalization of the spectrum is to require the
rms fluctuations of mass in a randomly placed sphere to be equal
1 at the scale of 8h_1Mpc (this value ccmes from the counts of

galaxies on large scales, Davis and Peebles 19583}:

o 12
2 L -
Bl [Tl wlerld) <4 e=807 e H1
v
where W(x) is the window function, Wi(x) = 9x_6(sin X - X cCos xlz.

The other way is to find the value of J3 integral and compare

it with the observed wvalue on a given scale - we have choosen

R = 15h_1Mpc.

g=15 ’w."’ Mpc

(12]

where the correlation function 1s related to the power spectrum
by:

() = Skl|zb&ﬂl 3?%5 dk (13)
O
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Instead of that, for the neutrincs we can regquire the
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nenlinear structures to form at the redshift Za1 T 3 {this is
because we observe guasars at this redshift). We £find the
amplitude AL from the value of zrms dispersion of density

perturbaticns:

Code] =06 (1Y)
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Iv. THE RESULTS.

The results are presented on Figures 1 and 2. Many parameters
of the model influence the final values and the situation is more

complex than in the standard, one~dominant-component models.

The results obtained with the normalizations related to the
counts of galaxies are very clese for cold relics and for
neutrinos because the parts of the spectra that we are sampling
are almost identical for both. Wher we use "neutrinos" in the
following discussion we mean neutrino model normalized for the

appearance of the nonlinearity at I 3

5 with zd for

neutrinos and for cold relics is because both spectra are

First of all the difference in behavior of a

normalized in different manner. Some of the effect comes alsc
from the fact that the lack o¢of growth in DPC cosmology is

concentrated in late times. The ratio of the growth factors since

emmision +ill 2.1 < 3 and since enmmision till toéay is for
small-scale perturbations (as used in normalization) egqual to 1:3
for 24 = 2 and 1:2 for zq = 10 but the first grewth factor is

zlmost unchanged (the ratio in matter—-dominated universe is 1:4).
For the c¢old relics the results are as expected - the larger

value of 2z 4 means the lower growth factor and then the higher



initial amplitude required to obtain observed structures. This

higher initial amplitude results in higher quadrupole mcment.

An interesting feature of the model is that we observe here
something more than the Sachs-Wolfe effect. This is becauvse only
for pure matter-deminated universe the term ~(e£+u§g} in eq. (7)
vanishes and uSZdx ~ 1d1 so we can do the integral in (7) by
parts and obtain the anisotropy as a function of perturbations at
the emmision. In our model this is not the case because of the
change of the eqguation of state after the emmision - +the MBR
pattern is also influenced by the history of the universe between

emmision and today.

Some intuition about the importance of this effect may be
gained from the calculations with g T 0 for all the time. The
normalization in this case is the same because our model for the
R perturbations influences only very large scales. Hence the
difference in results that we can observe says us something about

the effect of the late evolution of very large scales on the MBR,

The results for a, are for 24 = 2 almost the same but Ifor
zq = 10 they are about 25 per cent smaller when €n = 0. That
means that if the decay occurs early enough the radiation
perturbations rive the barionic perturbations to grow on scales
larger than the horizon. The increased geometry perturbations
cause higher fluctuations of the MBR through the non-5achs-Wolfe
effect.

If we change the value of & to 0.3 we obtain the results

QxR
for neutrinos about 20 per cent for z2q = 2 and 10 per cent for
24 7 10 higher than in 0.1 case. For cold relics the situation is
different - the change is abcut 15 per cent for zg = 2 and 35 per

cent for zd = 10 but in the opposite direction.



V. CONCLUSIONS.
The observed value of a, is < ‘Il’.)_4 (90 per cent confidence),

as derived from the observations by Efstathiou and Bond (1388).

From Fig.1. we can see that for cold relics (or for neutrinos
if the EM/M or J3 normalization is adopted}) £for both
normalizations for h in the range 0.3-0.5 there are values of
23 that do not cause excessive anisotropy. For h = 0.3 the
allcwed range for the decay redshift is 25 < 3-4 {(depending on
the choosen normalization). For h = 0.5 this range is z. < 3-5.

d

The mecre detailed treatment for probably would not produce

“R
substantial differences.

For the neutrincs with zZ1 T 3 normalization the situation is
much worse -~ any values of zd are excluded. However, without the
detailed model of the structure formation we cannot decide which
normalization is correct and whether neutrinos can be saved as

decaying particle candidates.

The large-scale MBR anisotropy in DPC models is found to be
as restrictive as the small-scale one, The'range of allowed
values of z5 found from small scales was < 4 (Vittorio and 5ilk
1985, Kolb, 0live and Vittoric 1986).

If we combine the upper limits obtainsd above with the lower
limic Z4 > 2 reguired to give us sufficiently high value of the
ratio QR/QNR today we find the allowed ranges of parameters of
the model tc be quite narrow. Certainly +the normalization
techniques have some uncertainity and we should remember of it.
Even then the values of a, lie guite close to the observed upper
limit. As so far all the measurements of MBR anisctropies
maintain the tendency to shift down all the upper limits. The
value a, < 10-4 that we used is guite conservative and we can
find obsgrvations giving lower wvalues. Recently the value
< 319

a {95 per cent confidence} was reported (Soviet RELIC

2



experiment, as guoted by Kaiser and Silk 1986). If we adopt this
measurement we conclude that all the variants o©f DPC models
analysed here give too high wvalues of the MBR guadrupole

anisotropy and have to be excluded.
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FIGURE CAPTIONS

Figure 1. The values of guadrupole mconrent a, as a function of
the decay redshift 24 for decaying cold relics|or neutrinosl The
triangles are for normalization FM/M (SHJMpc) = 1 and the circles
for J3(15H4Mpc) = 550h_3Mpc3. Open symbols are for h = 0.5,

filled - for h = 0.3.

Figure 2. The same as Fig.1. for decaying neutrinos and the
1z
normalization <f£b{k)l§ )= 0.6 . Open squares are for h = 0.5,
nl*™
0.3

the filled ones - for h =
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